
Page 8 FoxRockX September 2014

Summarizing aggregated
data, Part 2
SQL Server’s CUBE clause lets you summarize data on all dimensions at once, while
GROUPING SETS lets you get whichever summaries you want.

Tamar E. Granor, Ph.D.
In my last article, I introduced the ROLLUP key-
word that lets a single query aggregate data and
then summarize those aggregations. The CUBE
keyword takes that one step farther. GROUPING
SETS goes even farther, letting you specify exactly
which combinations to summarize; it also lets you
summarize without holding on the original aggre-
gated data.
When you use GROUP BY in a query, you get aggre-
gated results. That is, the result contains one record
totalling or counting or averaging or whatevering all
the records that match in the specified fields. So you
can, for example, count and total all invoices by month,
or, as in Listing 1 (SalesByCountryCity.sql in this
month’s downloads), do that for each combination of
city and month. Partial results are shown in Figure 1.

Listing 1. This query, using SQL Server’s sample Adven-
tureWorks 2008 database, computes sales totals by city and
month.
SELECT Person.CountryRegion.Name,
 Person.Address.City,
 YEAR(OrderDate) AS nYear,
 MONTH(OrderDate) AS nMonth,
 SUM(SubTotal) AS TotalSales
 AVG(SubTotal) AS AvgSale,
 COUNT(*) AS NumSales
 FROM Sales.Customer
 JOIN Person.Person
 ON Customer.PersonID =
 Person.BusinessEntityID
 JOIN Person.BusinessEntityAddress

 ON Person.BusinessEntityID =
 BusinessEntityAddress.BusinessEntityID
 JOIN Person.Address
 ON BusinessEntityAddress.AddressID =
 Address.AddressID
 JOIN Person.StateProvince
 ON Address.StateProvinceID =
 StateProvince.StateProvinceID
 JOIN Person.CountryRegion
 ON StateProvince.CountryRegionCode =
 CountryRegion.CountryRegionCode
 JOIN Sales.SalesOrderHeader
 ON Customer.CustomerID =
 SalesOrderHeader.CustomerID
 JOIN Sales.SalesOrderDetail
 ON SalesOrderHeader.SalesOrderID =
 SalesOrderDetail.SalesOrderID
 GROUP BY CountryRegion.Name, Address.City,
 YEAR(OrderDate), MONTH(OrderDate))

In last month’s article, I showed how the
 ROLLUP clause lets you include in the results sum-
maries for various subsets, such as an entire year
for one city. Listing 2 shows one of the examples
from that article; it provides summaries by year for
each city, by city for the whole period, by country
and for the whole data set. Partial results are shown
in Figure 2.

Listing 2. The ROLLUP clause lets you summarize results in a
grouped query.
SELECT Person.CountryRegion.Name,
 Person.Address.City,
 YEAR(OrderDate) AS nYear,
 MONTH(OrderDate) AS nMonth,
 SUM(SubTotal) AS TotalSales,
 AVG(SubTotal) AS AvgSale,
 COUNT(SubTotal) AS NumSales
 FROM Sales.Customer
 JOIN Person.Person
 ON Customer.PersonID =
 Person.BusinessEntityID
 JOIN Person.BusinessEntityAddress
 ON Person.BusinessEntityID =
 BusinessEntityAddress.BusinessEntityID
 JOIN Person.Address
 ON BusinessEntityAddress.AddressID =
 Address.AddressID
 JOIN Person.StateProvince
 ON Address.StateProvinceID =
 StateProvince.StateProvinceID
 JOIN Person.CountryRegion
 ON StateProvince.CountryRegionCode =
 CountryRegion.CountryRegionCode

Figure 1. The query in Listing 1 computes the total, average and
count for each combination of country, city, year and month.

September 2014 FoxRockX Page 9

 JOIN Sales.SalesOrderHeader
 ON Customer.CustomerID =
 SalesOrderHeader.CustomerID
 JOIN Sales.SalesOrderDetail
 ON SalesOrderHeader.SalesOrderID =
 SalesOrderDetail.SalesOrderID
 GROUP BY ROLLUP(CountryRegion.Name,
 Address.City, YEAR(OrderDate),
 MONTH(OrderDate))

Introducing CUBE
ROLLUP is limited to summarizing only based on
the hierarchy you specify. For example, the query
in Listing 2 doesn’t give summaries for each coun-
try for each year. While you can get that result with
ROLLUP, you have to give up some other summa-
ries to do so.

If you want to summarize based on every
 possibile combination of values, use CUBE rather
than ROLLUP. The query in Listing 3 is identical
to the one in Listing 2, except that the GROUP BY
clause specifies CUBE rather than ROLLUP. Figure
3 shows part of the results. The items at the top of
the grid include summaries you wouldn’t get with
ROLLUP, such as the summary for all locations in
all Decembers about halfway down and the sum-
mary for Australia for all of 2005 in the last row
shown.This query is included in this month’s
downloads as SalesByCountryCityCubeNoOrder.
sql.

Listing 3. Use the CUBE clause to get summaries for all
combinations of values.
SELECT Person.CountryRegion.Name,
 Person.Address.City,
 YEAR(OrderDate) AS nYear,
 MONTH(OrderDate) AS nMonth,
 SUM(SubTotal) AS TotalSales,
 AVG(SubTotal) AS AvgSale,
 COUNT(SubTotal) AS NumSales
 FROM Sales.Customer
 JOIN Person.Person
 ON Customer.PersonID =
 Person.BusinessEntityID
 JOIN Person.BusinessEntityAddress
 ON Person.BusinessEntityID =
 BusinessEntityAddress.BusinessEntityID
 JOIN Person.Address
 ON BusinessEntityAddress.AddressID =
 Address.AddressID

 JOIN Person.StateProvince
 ON Address.StateProvinceID =
 StateProvince.StateProvinceID
 JOIN Person.CountryRegion
 ON StateProvince.CountryRegionCode =
 CountryRegion.CountryRegionCode
 JOIN Sales.SalesOrderHeader
 ON Customer.CustomerID =
 SalesOrderHeader.CustomerID
 JOIN Sales.SalesOrderDetail
 ON SalesOrderHeader.SalesOrderID =
 SalesOrderDetail.SalesOrderID
 GROUP BY CUBE(CountryRegion.Name,
 Address.City, YEAR(OrderDate),
 MONTH(OrderDate))

However, some of the results of this query are
misleading. The first few rows in Figure 3 should
give you a clue as to the problem. We’re summariz-
ing by name of a city for a month. What if we have
multiple cities with the same name? In fact, this data
set contains several repeated city names, among
them Birmingham. Figure 4. shows that when both
Birminghams have data for a given month, we get
a total for that month that covers both cities, which
is meaningless.

The way to avoid the problem is to group fields
together if their data is linked. You do that by put-
ting parentheses around the fields to be grouped.
Listing 4 shows the same query, but with the Name

Figure 2. With ROLLUP, summaries are provided for each level you
specify.

Figure 3. When you specify CUBE, every possible combination
of values is summarized.

Figure 4. Some of the summarized results can be misleading if fields are
dependent on each other. Here, we get totals for a given month for both
Birminghams.

Page 10 FoxRockX September 2014

(that is, Country) and City fields grouped together.
(It also has an ORDER BY clause to sort the results
into a useful order.) It’s included in this month’s
downloads as SalesByCountryCityCubeCombined.
sql. Figure 5 shows partial results; note that there
are no totals where Name is null, but City is not.

Listing 4. Group fields with parentheses in the CUBE clause to
have them treated as a single dimension.
SELECT Person.CountryRegion.Name,
 Person.Address.City,
 YEAR(OrderDate) AS nYear,
 MONTH(OrderDate) AS nMonth,
 SUM(SubTotal) AS TotalSales,
 AVG(SubTotal) AS AvgSale,
 COUNT(SubTotal) AS NumSales
 FROM Sales.Customer
 JOIN Person.Person
 ON Customer.PersonID =
 Person.BusinessEntityID
 JOIN Person.BusinessEntityAddress
 ON Person.BusinessEntityID =
 BusinessEntityAddress.BusinessEntityID
 JOIN Person.Address
 ON BusinessEntityAddress.AddressID =
 Address.AddressID
 JOIN Person.StateProvince
 ON Address.StateProvinceID =
 StateProvince.StateProvinceID
 JOIN Person.CountryRegion
 ON StateProvince.CountryRegionCode =
 CountryRegion.CountryRegionCode
 JOIN Sales.SalesOrderHeader
 ON Customer.CustomerID =
 SalesOrderHeader.CustomerID
 JOIN Sales.SalesOrderDetail
 ON SalesOrderHeader.SalesOrderID =
 SalesOrderDetail.SalesOrderID
 GROUP BY CUBE((CountryRegion.Name,
 Address.City),
 YEAR(OrderDate),
 MONTH(OrderDate))
 ORDER BY Name, City, nYear, nMonth

If you don’t want summaries for each month
across the years (that is, for example, for all Aprils),
you can group year and month in the CUBE clause,

as well, as in Listing 5. A query that uses this CUBE
clause is included in this month’s downloads as
SalesByCountryCityCubeCombinedBoth.sql.

Listing 5. You can have multiple groups of fields within the
CUBE clause.
GROUP BY CUBE(
 (CountryRegion.Name, Address.City),
 (YEAR(OrderDate), MONTH(OrderDate)))

Fine tuning the set of summaries
ROLLUP and CUBE take care of very common sce-
narios, but each is restricted in which set of sum-
maries you can get, and each includes the basic
aggregated data in the result. What if you want a
different set of summaries? What if you want just
the summaries without the basic aggregated data?

In our example, suppose you want to see the
summary for each month across all years and loca-
tions, the summary for each year across all months
and locations, and the summary for each location
across all months and years? You could get those
results by doing a separate query for each and then
combining them with UNION ALL, as in Listing
6 (SummariesUnion.SQL in this month’s down-
loads); Figure 6. shows partial results.

Listing 6. You can retrieve just the summaries using UNION
ALL.
SELECT Person.CountryRegion.Name,
 Person.Address.City,
 null AS nYear,
 null AS nMonth,
 SUM(SubTotal) AS TotalSales,
 AVG(SubTotal) AS AvgSale,
 COUNT(SubTotal) AS NumSales
 FROM Sales.Customer
 JOIN Person.Person
 ON Customer.PersonID =
 Person.BusinessEntityID
 JOIN Person.BusinessEntityAddress
 ON Person.BusinessEntityID =
 BusinessEntityAddress.BusinessEntityID
 JOIN Person.Address
 ON BusinessEntityAddress.AddressID =
 Address.AddressID
 JOIN Person.StateProvince
 ON Address.StateProvinceID =
 StateProvince.StateProvinceID
 JOIN Person.CountryRegion
 ON StateProvince.CountryRegionCode =
 CountryRegion.CountryRegionCode
 JOIN Sales.SalesOrderHeader
 ON Customer.CustomerID =
 SalesOrderHeader.CustomerID
 JOIN Sales.SalesOrderDetail
 ON SalesOrderHeader.SalesOrderID =
 SalesOrderDetail.SalesOrderID
 GROUP BY Person.CountryRegion.Name, City
UNION ALL
SELECT NULL AS Name,
 NULL City,
 NULL AS nYear,
 MONTH(OrderDate) AS nMonth,
 SUM(SubTotal) AS TotalSales,
 AVG(SubTotal) AS AvgSale,
 COUNT(SubTotal) AS NumSales
 FROM Sales.SalesOrderHeader

Figure 5. With country and city grouped, the results don’t have
totals for a city without the associated country.

September 2014 FoxRockX Page 11

 JOIN Sales.SalesOrderDetail
 ON SalesOrderHeader.SalesOrderID =
 SalesOrderDetail.SalesOrderID
 GROUP BY MONTH(OrderDate)
UNION ALL
SELECT NULL AS Name,
 NULL AS City,
 YEAR(OrderDate) AS nYear,
 NULL AS nMonth,
 SUM(SubTotal) AS TotalSales,
 AVG(SubTotal) AS AvgSale,
 COUNT(SubTotal) AS NumSales
 FROM Sales.SalesOrderHeader
 JOIN Sales.SalesOrderDetail
 ON SalesOrderHeader.SalesOrderID =
 SalesOrderDetail.SalesOrderID
 GROUP BY YEAR(OrderDate)
 ORDER BY Name, City, nYear, nMonth

That’s a lot of code. SQL Server offers an
alternative way to do this, using a feature called
GROUPING SETS. They let you fine tune which
summaries you get. With GROUPING SETS, you
explicitly tell the query which combinations to
summarize. The GROUPING SETS equivalent
of the UNIONed query in Listing 6 is shown in
Listing 7 (included in this month’s downloads as
 SummariesGroupingSets.SQL).

Listing 7. GROUPING SETS let you ask for the specific set of
summaries you want.
SELECT Person.CountryRegion.Name,
 Person.Address.City,
 YEAR(OrderDate) AS nYear,
 MONTH(OrderDate) AS nMonth,
 SUM(SubTotal) AS TotalSales,
 AVG(SubTotal) AS AvgSale,
 COUNT(SubTotal) AS NumSales
 FROM Sales.Customer
 JOIN Person.Person
 ON Customer.PersonID =
 Person.BusinessEntityID
 JOIN Person.BusinessEntityAddress
 ON Person.BusinessEntityID =
 BusinessEntityAddress.BusinessEntityID
 JOIN Person.Address
 ON BusinessEntityAddress.AddressID =
 Address.AddressID
 JOIN Person.StateProvince
 ON Address.StateProvinceID =

 StateProvince.StateProvinceID
 JOIN Person.CountryRegion
 ON StateProvince.CountryRegionCode =
 CountryRegion.CountryRegionCode
 JOIN Sales.SalesOrderHeader
 ON Customer.CustomerID =
 SalesOrderHeader.CustomerID
 JOIN Sales.SalesOrderDetail
 ON SalesOrderHeader.SalesOrderID =
 SalesOrderDetail.SalesOrderID
 GROUP BY GROUPING SETS (
 (CountryRegion.Name, Address.City),
 (YEAR(OrderDate)), (MONTH(OrderDate)))
 ORDER BY Name, City,
 YEAR(OrderDate), MONTH(OrderDate)

The GROUP BY clause indicates three grou
ping sets here, each enclosed in parentheses:

(CountryRegion.Name, Address.City)
which says to show totals for each city
and country combination, across all
years and months; (YEAR(OrderDate)),
which asks for totals for each year,
across all locations and months; and
(MONTH(OrderDate)), which requests
totals for each month, across all loca-
tions and years. The parentheses are
required in the first case, to show that
city and country are to be treated as a
set. While they’re not required for the
other two items, they do make clear that
each is to be handled separately.

ROLLUP and CUBE are actually
special cases of GROUPING SETS. You
can use GROUPING SETS to get the
same results, though it actually makes

the code longer. Listing 8 shows the GROUP BY
clause for the GROUPING SETS equivalent of the
ROLLUP query in Listing 2. (The complete version
of this query is included in this month’s downloads
as GroupingSetsRollupEquiv.sql.)

Listing 8. You can use GROUPING SETS instead of ROLLUP,
but it calls for more code in the GROUP BY clause.
GROUP BY GROUPING SETS (
 (CountryRegion.Name, Address.City,
 YEAR(OrderDate), MONTH(OrderDate)),
 (CountryRegion.Name, Address.City,
 YEAR(OrderDate)),
 (CountryRegion.Name, Address.City),
 (CountryRegion.Name),
 ())

There are five grouping sets shown. The first
set, which includes all four nonaggregated fields is
the equivalent of simply doing a GROUP BY with
that list. It does the aggregation, but no summaries.

Each grouping set after that contains one fewer
field than the preceding one, until the last contains
no field, indicating that the summary should be
computed over the entire data set. Looking at this
GROUP BY clause actually helps to clarify what
ROLLUP does. It aggregates on all the fields listed,
then one by one, removes fields from the right and
aggregates again.

Figure 6. Sometimes, you want only the summaries, not the original aggregations.

Page 12 FoxRockX September 2014

For the equivalent of CUBE, the
GROUPING SETS list is even more
unwieldy, but again it sheds light on what’s
going on when you use CUBE. Listing 9
shows the GROUP BY clause for a query
(GroupingSetsCubeCombinedEquiv.sql
in this month’s downloads) that produces
the same results as Listing 4.

Listing 9. Replacing CUBE with GROUPING SETS
lets you see all the cases that CUBE handles.
GROUP BY GROUPING SETS(
 (CountryRegion.Name, Address.City,
 YEAR(OrderDate), MONTH(OrderDate)),
 (CountryRegion.Name, Address.City,
 YEAR(OrderDate)),
 (CountryRegion.Name, Address.City,
 MONTH(OrderDate)),
 (CountryRegion.Name, Address.City),
 (YEAR(OrderDate), MONTH(OrderDate)),
 (YEAR(OrderDate)),
 (MONTH(OrderDate)),
 ())

Note that unlike the CUBE query, you don’t
have to (in fact, can’t) enclose the country/city pair
in parentheses here. You just omit any grouping
sets that include one without the other.

Of course, there’s no reason to write out
the long version when you can use ROLLUP or
CUBE. But when you need something else, having
GROUPING SETS available is a big help.

As Listing 7 demonstrates, grouping sets also
let you get summaries without including the basic
aggregated data. Just omit the grouping set that
lists all the fields on which to aggregate. Be aware,
though, that as with any other GROUP BY clause,
every field in the field list that doesn’t include an
aggregate function must appear somewhere in the
list of grouping sets.

Listing 10 shows the GROUP BY clause for a
query that’s equivalent to Listing 4, but without
the first grouping set, so that only the summaries
are included. Figure 7 shows partial results; if you
compare to Figure 5, you can see that the rows
where nothing is null have been eliminated. This
query is included as GroupingSetsWithoutAggre-
gates.sql in this month’s downloads.

Listing 10. By omitting the grouping set that includes all non-
aggregated fields, you can get just the summaries you want
without the base aggregated data.
GROUP BY GROUPING SETS(
 (CountryRegion.Name, Address.City,
 YEAR(OrderDate)),
 (CountryRegion.Name, Address.City,
 MONTH(OrderDate)),
 (CountryRegion.Name, Address.City),
 (YEAR(OrderDate), MONTH(OrderDate)),
 (YEAR(OrderDate)),
 (MONTH(OrderDate)),
 ())

Make it pretty
As with the ROLLUP clause, for both CUBE and
GROUPING SETS, you can make the results easier
to understand by using ISNULL() to replace the
nulls with meaningful descriptions. (Reminder:
ISNULL() is SQL Server’s equivalent to VFP‘s
NVL().)

Listing 11 shows the query from Listing 4 with the
descriptions added. Figure 8 shows partial results.
The query is included in this month’s downloads
as SalesByCountryCityCubeCombinedWDesc.sql.

Listing 11. You can replace the nulls that indicate summary
records with descriptions.
SELECT ISNULL(Person.CountryRegion.Name,
 'All countries') AS Name,
 ISNULL(Person.Address.City,
 'All cities') AS City,
 ISNULL(STR(YEAR(OrderDate)),
 'All years') AS cYear,
 ISNULL(STR(MONTH(OrderDate)),
 'All months') AS cMonth,
 SUM(SubTotal) AS TotalSales,
 AVG(SubTotal) AS AvgSale,
 COUNT(SubTotal) AS NumSales
 FROM Sales.Customer
 JOIN Person.Person
 ON Customer.PersonID =
 Person.BusinessEntityID
 JOIN Person.BusinessEntityAddress
 ON Person.BusinessEntityID =
 BusinessEntityAddress.BusinessEntityID
 JOIN Person.Address
 ON BusinessEntityAddress.AddressID =
 Address.AddressID
 JOIN Person.StateProvince
 ON Address.StateProvinceID =
 StateProvince.StateProvinceID
 JOIN Person.CountryRegion
 ON StateProvince.CountryRegionCode =

Figure 7. When you exclude the grouping set that contains all aggregated fields,
the result contains only the summaries.

September 2014 FoxRockX Page 13

 CountryRegion.CountryRegionCode
 JOIN Sales.SalesOrderHeader
 ON Customer.CustomerID =
 SalesOrderHeader.CustomerID
 JOIN Sales.SalesOrderDetail
 ON SalesOrderHeader.SalesOrderID =
 SalesOrderDetail.SalesOrderID
 GROUP BY CUBE((CountryRegion.Name,
 Address.City),
 YEAR(OrderDate),
 MONTH(OrderDate))
 ORDER BY Name, City, cYear, cMonth

What about VFP?
My last article showed how you do the equivalent
of ROLLUP in VFP. The second approach shown
there, using a separate query for each summary you

want, and then combining the results with UNION,
works for CUBE and GROUPING SETS, as well. Of
course, the resuling code is fairly opaque. That’s
why having these shortcuts in SQL Server is so nice.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced
numerous Visual FoxPro applications for busi-
nesses and other organizations. Tamar is author

or co-author of a dozen
books including the award
winning Hacker’s Guide to
Visual FoxPro, Microsoft
Office Automation with
Visual FoxPro and Tam-
ing Visual FoxPro’s SQL.
Her latest collaboration is
VFPX: Open Source Trea-
sure for the VFP Devel-
oper, available at www.
foxrockx.com. Her other
books are available from
Hentzenwerke Publishing
(www.hentzenwerke.com).
Tamar was a Microsoft
Support Most Valuable
Professional from the pro-
gram's inception in 1993
until 2011. She is one of the
organizers of the annual

Southwest Fox conference. In 2007, Tamar received
the Visual FoxPro Community Lifetime Achievement
Award. You can reach her at tamar@thegranors.
com or through www.tomorrowssolutionsllc.com.

FoxRockX™(ISSN-1866-4563)

dFPUG c/o ISYS GmbH
Frankfurter Strasse 21 B
61476 Kronberg, Germany
Phone +49-6173-950903
Fax +49-6173-950904
Email: foxrockx@dfpug.de
Editor:
Rainer Becker-Hinrichs

Copyright © 2014 ISYS GmbH. This work is an independently produced
pub lication of ISYS GmbH, Kronberg, the content of which is the property
of ISYS GmbH or its affiliates or thirdparty licensors and which is protected
by copyright law in the U.S. and elsewhere. The right to copy and publish the
content is reserved, even for content made available for free such as sample
articles, tips, and graphics, none of which may be copied in whole or in part
or further distributed in any form or medium without the express written
permission of ISYS GmbH. Requests for permission to copy or republish any
content may be directed to Rainer Becker-Hinrichs.

FoxRockX, FoxTalk 2.0, FoxTalk, Visual Extend and Silverswitch are trademarks of ISYS GmbH. All product names or
services identified throughout this journal are trademarks or registered trademarks of their respective companies.

FoxRockX is published bimonthly by ISYS GmbH

Figure 8. You can use ISNULL() to substitute descriptions for nulls, and make the results easier to
comprehend.

